
The Sesame LuceneSail:
RDF Queries with Full-text Search

NEPOMUK Technical Report 2008-1

Enrico Minack1, Leo Sauermann2, Gunnar Grimnes2,
Christiaan Fluit3, and Jeen Broekstra3

1 L3S Research Center / Leibniz Universität Hannover,
30167 Hannover, Germany, minack@L3S.de

2 Knowledge Management Dept., DFKI, 67663 Kaiserslautern, Germany,
{firstname.lastname}@dfki.de

3 Aduna, 3817 CS Amersfoort, The Netherlands,
{firstname.lastname}@aduna-software.com

Abstract. With the growth of the Semantic Web, the requirements
on storing and querying RDF has become more sophisticated. When
a larger amount of data has to be managed, queries in structured query
languages, such as SPARQL, are not always powerful enough. Use of ad-
ditional keywords for querying can further reduce the result set towards
the actual relevant answers, however, SPARQL only provides complete
string matching or filtering based on regular expressions, which is a very
slow operation. In contrast, state of the art Information Retrieval (IR)
techniques provide sophisticated features such as keyword search, lemma-
tisation, stemming and ranking. In this paper we present a combination
of structured RDF queries and full-text search. It is implemented as an
extension of an established RDF store (Sesame) with IR capabilities us-
ing the text search library Lucene, without requiring modifications to
existing RDF query languages.

1 Introduction

The World Wide Web with its billions of web resources made clear the need for
methods to find web resources with queries that are as simple as a hand-full
of keywords. However, finding resources like that on the Semantic Web, i.e. in
a large distributed RDF graph containing millions of RDF resources with links
to other RDF resources and RDF literals, is surprisingly poorly supported by
today’s RDF stores and query languages.

The research community addressed this shortcoming by employing simple
full-text indices for RDF literals. Though effective, this still lacks lots of features
provided by classical IR systems. Unlike previous approaches which built new
RDF storage systems with IR features from scratch, we show how to simply
combine and benefit from well-known established systems: Sesame and Lucene.

Our full-text extension for Sesame RDF storages is called LuceneSail . The
extension facilitates pure Lucene queries (IR) within pure RDF queries (struc-
tured SPARQL queries), taking full advantage of the expressiveness of each of

them. This was achieved without any modifications of existing RDF query lan-
guage syntaxes. The LuceneSail can be re-used for many existing mature “clas-
sic” Sesame RDF storages, e.g. File-, MySQL- and PostgreSQL-based ones. Our
principal concept can also be adopted to other existing RDF storages.

The LuceneSail is motivated by the requirement of including effective search
into Semantic Desktop productivity tools, specifically the NEPOMUK Project4

and Aduna AutoFocus5. However, the design and implementation of the Luce-
neSail is in no way particular to these projects, and the method is applicable to
any application that requires full-text indexing over an RDF graph.

The rest of this paper is organised as follows. Section 2 introduces into struc-
tured and full-text indexing and search, which are the two complementary topics
we are addressing here, as well as two well-known representatives — i.e. imple-
mentations — of each area: Sesame and Lucene. Section 3 describes our com-
bination of both in theory, whereas Section 4 further describes implementation
details. Section 5 presents a performance evaluation of our approach. In Sec-
tion 6 we discuss decisions taken and further open questions, Section 7 examines
related work, and Section 8 makes concluding remarks.

2 Structured and Full-text Indexing and Search

In the following section we briefly introduce the two research areas this work is
addressing, i.e. structured search — coming from the Database (DB) commu-
nity — and full-text indexing and search, an Information Retrieval (IR) topic.

2.1 Structured Indexing and Search

Structured data are any kind of data that perfectly fit into a schema, or, more
visual, can be put into a table of however defined columns. Talking about the
Semantic Web, we primarily focus on structured data described in RDF [1]. This
basically is a directed graph where RDF resources are nodes and RDF predicates
are edges. Usual RDF query languages as SPARQL [2], RDQL [3] or SeRQL [4]
query a graph by defining graph patterns with wildcards and variables6. The
result set is either a set of graph fragments that exactly match the patterns, or
a set of variable bindings (values). As usual in structured data domain, results
are always exactly matching the query.

Influenced by the fact that an RDF graph is by definition a composition
of RDF statements (triples) [5], most RDF systems handle RDF as a set of
statements. Different indices on structure (schema) and data (instance) level are
employed to quickly retrieve the relevant triples that satisfy a graph pattern.
Since nodes in RDF can also be RDF literals (strings), inverted indices sup-
porting full-text search have also been employed [6] [7]. However, these indices
provide only simple full-text related features or non at all. Furthermore, RDF
4 http://nepomuk.semanticdesktop.org
5 http://www.aduna-software.com/solutions/autofocus/overview.view
6 Note that without wildcards the query degrades to an exists function.

query languages just support exact string matching, which is bulky when you
do not exactly know your data or desired information. Some languages provide
filter functions (e.g. SPARQL provides FILTER REGEX(...)) that evaluate reg-
ular expressions on literals in the result set. This of course is not efficient since
firstly a preliminary result set is fetched from disk and secondly only a filtered
sub-set of it is returned.

Concerning RDF literals, today’s RDF query languages and RDF stores lack
sophisticated full-text search. This is surprising since literals are giving meaning
to the Semantic Web, they are the connection to the outer world, to humans.
Without literals, an RDF graphs is just a set of interconnected nodes, one ele-
ment out of a set of isomorphic graphs where nodes are practically name- and
meaningless. Searching the Semantic Web would benefit greatly from good literal
search: finding the most relevant resources regarding a desired meaning. Literal
search filters out relevant resources from all the resources that match specific
structure constraints. When relevant literals have been found the structure be-
comes important for giving more meaning to the relevant resources.

2.2 Full-text Indexing and Search

In Information Retrieval, resources (documents) are usually represented by their
plain-text content, i.e. a long string of characters. While indexing, this string
is tokenised into terms, stemmed or lemmatised (normalising the terms) and
finally transformed into a term vector. Each field represent one term frequency
(TF), i.e. the number of this term’s occurrences divided by the sum of all term
occurrences. The TF is a measure for the relevance of a document for a given
term. The term-resource relations are then indexed in an inverted index.

On query-time, a given keyword is firstly transformed into a term again via
stemming or lemmatisation, and secondly the inverted index quickly provides
a ranked list of documents containing that term. The TF and the powerful
relevance measure TF×IDF (see Equation 1) provide valuable scoring functions
to find the most relevant documents out of all matching ones.

tfidfi =
ni∑
k nk

∗ log |D|
|{d : ti ∈ d}|

(1)

Where D is the set of all documents and ni is the frequency of the i-th term.

For Information Retrieval, this relevance measure gives relevance to the query
terms, expressed by a floating point score between 0 and 1. In contrast, results
matching a structured search are determined by binary decisions.

Besides the common keyword queries, today’s IR systems usually provide
phrase (a term consists of more than just one word), wildcard (* and ?), fuzzy
(finds terms that are similar to the given one), proximity (terms appear in a
specified distance) and range queries (all terms alphabetically between two given
terms). These queries can even be combined to more complex queries by using
boolean operators. Further, terms of a query may be weighted differently to
distribute importance among them.

2.3 Sesame: an RDF store

Our LuceneSail is based on Sesame2 , the second release of an open-source frame-
work for storage, inference and querying of RDF data, developed by the software
company Aduna7. Sesame2 is very flexible and can be configured to use differ-
ent storage backends, including a memory based, a relational database, or a
native RDF storage file format based. This flexibility is achieved through the
stacking of Storage And Inference Layer objects (SAILs). Working with RDF
in Sesame is based on a JDBC-like8 model and all operations are done through
a SAILConnection acquired through the SAIL objects. This connection-centred
approach ensures clean handling of transactions and concurrent access to an
RDF store. The SAILConnection objects provide methods for adding, removing
and querying RDF triples, as well as transaction management.

Sesame2 supports both, the recent SPARQL standard, as well as the SeRQL
standard that was used in Sesame1. On the SAIL level, the RDF queries are
already parsed from their original format and they are represented as instances
of the internal Sesame query model which is identical for all query languages.

2.4 Lucene: a Full-text Search Engine Library

Apache Lucene9 is a pure-Java, high-performance, full-featured text search en-
gine library. It has excellent performance characteristics, while keeping require-
ments of resources low. It implements all common IR features described in Sec-
tion 2.2, which are

– stemming and lemmatisation
– phrase, wildcard, fuzzy, proximity and range queries
– boolean operators and term boosting

Lucene’s underlying concept is a Lucene Document, which simply consists
of a number of fields, each field having a string name and string value. The
Documents are indexed by applying different strategies on each single fields.
There are various options for how to store and index the values, the most relevant
ones are shown in Table 1. Lucene employs inverted indices on each indexed field.
Each retrieved Document provides a score value reflecting its relevance based on
the TF×IDF measure. If fields are stored, previews — so called snippets — of
the matching section can also be provided by Lucene. On query-time, the field
to be queried must be specified, so it is not possible to simply query all fields at
once. To work around this problem it is considered best-practise to store all text
again in an indexed all field, which then enables quick queries over all fields at
the cost of increased storage space.

7 Sesame2 , http://openrdf.org/
8 The Java abstraction layer for relational database connections, i.e. Java DataBase

Connections.
9 Lucene, http://lucene.apache.org/

option value description

no The value is not stored.
store yes The value is completely stored in the index.

compressed The value is stored in a compressed way.

no The value is not indexed and cannot be searched.
index not tokenised The value is indexed as one single term.

tokenised The value is tokenised and indexed.

Table 1. Lucene options to index or/and store Document’s fields.

2.5 The need for a combined solution

Search on structured data allows to formulate very specific and complex queries
on structure properties. The corresponding results are always a set of exact
matches, rather than a ranked list. Since RDF resources typically provide a lot
of text information, one should also be able to formulate complex queries on
those properties. Studies have shown that users most probably start searching
by file location or classification in an ontology and then use simple keyword
searching [8], which gains importance if the Semantic Web shall get widely used.
However, current graph query languages strongly focus on structural queries
and neglect the expressiveness of textual queries. To support users both in file
location (ontology) and full-text search, a combination is needed.

In IR, textual queries can contain mandatory, optional and prohibited terms.
Further compared to stemming/lemmatisation, phrase, wildcard, fuzzy, proxim-
ity and range queries, IR textual queries show this advance in contrast to the
exact match queries of today’s graph query languages. Functions that filter the
preliminary result set using regular expression are not realistic alternatives for
any non-trivial amount of data.

In the following two sections we describe our approach of integrating Lucene
queries into graph query languages in general and specifically how it was imple-
mented in Sesame, enabling both, complex textual queries and structural queries
on RDF graphs.

3 Combining Structured with Full-text Queries

The main goal while integrating full-text into structured queries was to maintain
the syntax of the latter so that existing query language parser can be reused.
The recently standardised RDF query language SPARQL is expandable with
extension functions10 that can have multiple RDF terms as input parameters
and one output value. They can be used to test conditions for optional matching
or to convert data from one format to another. A problem with such functions
is, that they return only one value, thus we cannot return the rank of documents

10 SPARQL Query Language for RDF - Extensible Value Testing,
http://www.w3.org/TR/rdf-sparql-query/#extensionFunctions

and we will also miss other rich information from the full-text search, such as
the snippets.

Another way to extend SPARQL (as any other graph query language) is to
use what we have named virtual properties. These RDF properties form a distinct
full-text query resource inside the structured query, which is actually not stored
in the RDF store. Its purpose is to annotate RDF resources with full-text queries
and to provide means to return various information from the full-text search, as
opposed to one or no variables using extension functions. An example of such a
combined query is shown in Fig. 1. The full schema for our virtual properties is
shown in Appendix A.

 ls:matches ls:query

 ls:score

 ls:predicate
"keyword"

?score

ls:snippet

?snippet
 rdfs:comment

Graph Query Part Full-text Query Part
(virtual properties)

rdfs:comment

?r

?comment

 rdf:type

?t
rdfs:label

rdfs:label
?rl

?tl

Fig. 1. An example structured and full-text query.

In a layered architecture as shown in Fig. 2, those virtual properties are
extracted and corresponding actions on the full-text index are performed. The
non-virtual part of the query is sent to an underlying “classical” RDF store and
the results from both parts are merged into the combined result satisfying the
structured and the full-text query parts.

The main advantage of this two-layer approach is clearly that existing RDF
stores can be reused and transparently extended with full-text capabilities. Dif-
ferent query languages and existing parser can further on be used without mod-
ification.

4 Integrating Lucene into Sesame: the LuceneSail

We have chosen to implement our full-text search solution as a Sesame2 SAIL.
This approach has several advantages: Firstly, the LuceneSail will be indepen-
dent from any particular underlying RDF storage, as it can be stacked on top of
any existing Sesame2 SAIL. It will work equally well on top of the Sesame native-
store as on a relational data-base. Secondly, our LuceneSail will be query-format
agnostic, since we only need to hook into the query model for implementing the
full-text queries to Lucene, and Sesame will handle parsing of the SPARQL
queries. This also has the added advantage that by letting the Lucene queries

LuceneSail

NativeSail

Lucene
Index

Native
Store

RDF
Queries

RDF
Transactions

Lucene
Documents

Lucene
Queries

rewritten RDF
Queries

rewritten RDF
Transactions

Fig. 2. Layered architecture of the full-text extension.

form a part of the query model the merging of results is handled intelligently by
the existing Sesame query processor, and it might also optimise the queries.

The LuceneSail has two modes of operation within Sesame: the initial in-
dexing of the RDF data and the handling of the virtual properties describing
above occurring in queries. The indexing logic in the LuceneSail is built around
Sesame transactions, and resources are only indexed once a transaction has
been successfully committed to the underlying SAIL. Section 4.1 describes the
details of how RDF triples are mapped to Lucene Documents. The second task
of the LuceneSail is to inspect any incoming queries for use of the virtual RDF
predicates associated with full-text queries. The GraphPatterns for the virtual
properties are removed from the query model and replaced with GraphPattern
objects that will query the Lucene index and return matching Documents, as
well as score and snippets if requested.

4.1 Storing RDF in Lucene Documents

Storing RDF in Lucene Documents needs a mapping from the graph-structure
of RDF to the Lucene Document format. Such a Document contains Fields,
each Field has a name and a text-value. For full-text indexing of RDF data we
identified two possible strategies for mapping RDF to Lucene Documents11:

– resource-based: each Lucene Document represents a single RDF resource and
all its predicates.

– triple-based: each RDF triple becomes one Lucene Document.

11 Note that there are more ways to store the complete RDF in a Lucene index, however,
we only want to investigate scenarios where we extend an existing RDF store.

Each approach has its advantages and disadvantages. At first sight it might
seem that both alternatives are equivalent, since both, storing each triple, and
storing each (predicate, value) tuple for every resource looks equivalent. How-
ever, two bits of information are lost in the resource-centric approach: firstly,
in modern RDF stores it is common to extend the RDF data-model with a
fourth element to each triple, this is known as the context, and is used to split
a large RDF store into several named graphs. In the triple-based approach this
can be included by adding an additional field for storing the context, but for
the resource-based approach this is not feasible, since there is no way to know
if all triples describing one resource are all in the same context. A possible
work-around for retaining the context while using the resource-based approach
is to generate one Lucene Document for every context the resource appears in.
However, this introduces a problem when at query time several Documents cor-
responding to the same resource may be returned. Although the LuceneSail can
attempt to merge these Documents before returning the results, computing the
correct relevance score for the merged Document is non-trivial. The second bit
of information lost in the resource-centric approach is the additional meta-data
about RDF Literals contained in the language and data-type tags available in
RDF. Again, these can be added as additional fields when using the triple-based
approach.

For the resource-based approach it is also problematic to do queries for a
keyword occurring in any of the predicates. Since the potential number of RDF
predicates (and therefore fields) can be very large it is not feasible to do a joined
query over all fields, and, as detailed above, an all field storing all text of all
predicates has to be maintained. Moreover, it is not possible to do boolean queries
for the presence of a field using the resource-based method, because unlike for
the triple-based method the predicate URI itself is not stored.

However, the additional representational power of the triple-based approach
comes at the cost of having to index many more Lucene Documents, it is not
uncommon to have RDF stores with several million triples. Furthermore, in
order to query for statements having a specific predicate and a literal matching
a specific keyword two indices must be queried and joined, compared to one
lookup and no join in the resource-based approach. Also, querying for resources
that match in multiple specific predicates cannot be merged by Lucene directly,
as it can with the resource-based approach, and finally since all literals are
indexed in the same inverted index (field “literal”) there is only one global score
over all literals, and no relevance score for a single predicate can be computed.

We decided to use the resource-based approach for our LuceneSail , despite
the reduced representational power. We evaluated that the context information is
not essential for implementing useful full-text search. An an early version of the
LuceneSail was deployed in the Semantic Desktop prototype Gnowsis [9], the Se-
mantic Desktop search engine Beagle++12 and in the DataWrapper-Component
of the NEPOMUK Project and this feature was never required. The missing lan-

12 http://beagle.l3s.de/

guage and data type tags seem to be a larger problem, but it is always possible
to use the underlying RDF store to retrieve them.

Based on this resource-based approach the LuceneSail generates Lucene
Documents with the following fields:

– The uri field stores the URI of a resource (stored and indexed).
– The all field stores all literals of a resource (only indexed).
– For each triple about this resource, where the object is a literal, store and

index a field where the predicate is the field name and object is the field
value.

Storing each triple again in the Lucene index may seem unnecessary, but it
is required for supporting incremental indexing. If triples about a subject are
added in two transactions the LuceneSail needs to update the Document. Since
Lucene has no concept of update, this is done through deleting the Document
and adding the updated version, and to allow reconstruction of the Document
storing the fields is necessary. Of course, one could also query the underlying
RDF database for this information, but this would incur a large performance
penalty. An alternative and quicker approach for handling updates is to just
store the new information in a separate Lucene Document and merge any multiple
Documents at query time, however, computing the correct relevance score for a
query is then non-trivial and we decided against this approach. Again, based on
experience from the Gnowsis, Beagle++ and NEPOMUK projects we observe that
the deletion and re-adding of Documents does cause an unacceptable performance
penalty.

Finally, if the application domain and the structure of the RDF to be stored
is known it is possible to configure the LuceneSail to only full-text index certain
RDF predicates. Conversely, it is also possible to specify predicates that should
only be indexed, but not propagated to the base-SAIL. Such a predicate selection
can drastically reduce the amount of storage space required by the Lucene index,
and was for instance used in the Semantic Desktop System Gnowsis [9].

5 Performance Evaluation of the LuceneSail

In this section we present performance evaluation results of our first LuceneSail
prototype implementation. For this evaluation, existing RDF storage and query-
ing benchmarks such as the Lehigh University Benchmark (LUBM) [10] cannot
be used: they do not consider complex full-text queries. This benchmark, for
instance, generates artificial RDF graphs of any size. However, the RDF liter-
als are simple one-term strings like "Course26" or "Publication3Common". By
using such graphs, keyword search would be degraded to simple complete string
matching.

To our knowledge, no performance evaluations focusing on full-text have
been done before. Here, we simply want to provide an estimate of the typical
performance of the full-text search capabilities of the LuceneSail . We took a
large RDF graph that primarily contains literals: the Wordnet (1 February 2001)

RDF graph13. This graph represents the relations between English nouns, verbs,
adjectives and adverbs, organised into sets of synonyms, each representing one
underlying lexical concept. Nodes usually have multiple literals containing one
or only a few terms like "cognition" or "knowledge" and one longer multi-
term literal like "the psychological result of perception and learning
and reasoning". Further, this graph contains a lot of structural information.
Altogether, the Wordnet RDF graph contains over 473 000 triples, including over
273 000 triples with literal object. The corresponding NTriples file was 71 MByte
in size. For storage we employed an Sesame RDF native store, which had a size
of 52 MByte. The corresponding Lucene index was 47 MByte in size. For our
experiments we indexed and stored all predicates.

We then issued 100 000 queries, each containing one, two or three random
terms that occur in the indexed RDF literals. Each query is issued only once to
avoid caching effects. As the query response time we measured the time between
issuing the query and fetching all results. We evaluated pure full-text queries
and retrieved the score and URI of the matching resources. In Fig. 3 you can see
that with increasing result set size the average response time increases linearly,
probably mainly caused by the linear complexity of fetching the results from
disc. However, the response time is always below 50 ms for less then 1 000 results.
The number of terms does not have a significant influence on the overall response
time, so the performed joins must be negligible in time. Note that the results
of the 2 term queries do not significantly differ from the shown results and
are therefore omitted. The area between the σ- and the 2σ-lines, respectively,
illustrate the deviation of the response time: it always stays at a moderate level.

0

50

100

150

200

250

0 1000 2000 3000 4000

ti
m

e
[m

s]

result set size

one-term queries

avg.
avg.± σ
avg.± 2σ

0

50

100

150

200

250

0 1000 2000 3000 4000

ti
m

e
[m

s]

result set size

three-term queries

avg.
avg.± σ
avg.± 2σ

Fig. 3. Performance evaluation results.

13 Wordnet RDF, http://www.semanticweb.org/library/

6 Future Work

Integrating Lucene into an RDF store certainly suffers from some limitations
implicated by the different approaches and designs of both systems. This sec-
tion highlights these issues, outlines some ideas to overcome them, which can
therefore be considered as future work.

Our approach combines an RDF storage with a Lucene index, each having
their own index structures. This combined system is queried with one compre-
hensive query (see Fig. 1). The two sub-sets of results retrieved from each query
part need to be joined before all relevant resources that match the whole query
are known. This join is performed on the URI of the resources which refers to the
full-text query part via the ls:matches predicate. Unfortunately, the URI needs
to be read from the Lucene Documents matching the full-text query part, which
implies I/O operations. However, not all of these fetched URIs will match the
graph query part and are therefore irrelevant and cause unnecessary I/O opera-
tions. In contrast, the Lucene Document IDs can be retrieved from the matching
sub-set without further I/O operations, so the join could be performed on them.
But they firstly — due to context information or updates — do not match with
URIs one-by-one, and secondly they can change during a Lucene index optimi-
sation process. An ID-to-URI mapping, updated after each insert, deletion and
optimisation of the Lucene index would provide a much faster (due to less I/O
operations) access to the URIs for joins.

Lucene does not support querying multiple or all fields at once, natively. We
have implemented a MultiFieldQueryParser that can transparently rewrite a
Lucene query to search over multiple fields, which implies consecutive access
of several inverted indices. Alternatively, as stated above, the consequence of
the best-practise approach of using an all field is that the information which
field actually matched the query is lost. However, if Lucene would natively pro-
vide matching position feedback, this issue could easily be solved. Let Lucene
Document D consist of ND fields Fi : i = 1, . . . , ND. Each field has string value
vi containing lvi

characters. Then, the all field’s value would be constructed
by concatenating all field values vND+1 = v1 · v2 · . . . · vND

having the length
lvND+1 =

∑ND

i=1 lvi
. Considering p : 1 ≤ p ≤ lvND+1 being the position where

the all field matches the query (first matching character position), the following
function f(p) provides the index of the corresponding field:

f(p) =



1 : p ≤ lv1

2 : lv1 < p ≤ lv1 + lv2

3 : lv1 + lv2 < p ≤ lv1 + lv2 + lv3

...
ND : lv1 + · · ·+ lvND−1 < p ≤ lv1 + · · ·+ lvND

(2)

or

f(p) =

i :
i−1∑
j=1

lvi < p ≤
i∑

j=1

lvi (3)

All field length values lvi
can be stored along with the Document in a not-index

stored (ND +2)-th field. This approach can also be applied in a term-based way.

7 Related Work

In the last decade — since the Semantic Web was announced — a large number of
RDF storage systems were developed. The most promising and most developed
ones have already been reviewed in several surveys. A first and general survey
can be found in [11], a more RDBMS-focused survey is [12]. A performance
analysis of some file, MySQL and in-memory based RDF storages was done
in [13]. However, our work focuses on incorporating full-text capabilities into an
RDF storage. Probably the first store employing an inverted index on literals
was the RDFStore [6]. Full-text search is incorporated into RDQL and their
RDFStore-API. They maintain one inverted index for all literals, together with
simple stemming (first and last character stemming). Predicate specific full-text
search is achieved by joins, which are expected to be cheap since the RDFStore
uses compressed sparse bitmaps. There is no ranking provided and only simple
keyword queries can be issued. The RDFStore is written in Perl and C.

Yet Another RDF Store (YARS) [7] also uses one inverted index for all terms,
but provides only simple queries and neither stemming nor a scoring measure.
Since there is only one index for all literals, full-text queries specifying a predi-
cate require one additional join operation. As our approach, YARS uses virtual
properties, but without any feedback from the full-text search. YARS only uses
queries in N3 notation, it is written in Java and runs inside a Tomcat 5 server.

The University of Southampton developed 3store [14], an MySQL based triple
store implemented in Core C. MySQL provides a full-text index for each column,
allows simple keyword queries, boolean operators, phrase queries and some kind
of query expansion14, as well as a relevance measure. Thus, the 3store gains its
full-text capabilities from MySQL, which is therefore not general enough to be
applied on other RDF stores.

An RDF storage that incorporates Lucene quite similarly to our work is
Kowari [15]. When the Lucene support is used, all literal values in queries are
interpreted as Lucene queries and a matching score can then be received. Due
to virtual properties, in LuceneSail the Lucene queries are strictly distinguished
from the exact matches. Kowari introduces the Interactive Tucana Query Lan-
guage (iTQL) and implements a subset of RDQL only.

8 Conclusion and Outlook

In this paper, we have presented LuceneSail , a combination of structured queries
(SPARQL) with information retrieval (IR). The essence of the approach was to

14 MySQL 5.0 Reference Manual - Full-Text Searches with Query Expansion,
http://dev.mysql.com/doc/refman/5.0/en/fulltext-query-expansion.html

embed queries for the full-text of RDF literals into structured queries using vir-
tual properties. The results of these queries are computed by combining of an
RDF indexing store (Sesame2) and a highly optimised full-text search engine
(Apache Lucene). The score and text snippet results from the IR query can be
returned in combination with the results from the structured query, whereas in
related work the IR results are often omitted. Several optimisations were done
regarding the Lucene document format and the query language. Due to a lack of
comparable full-text search implementations and a standardised document cor-
pus, we carried out a performance evaluation based on the Wordnet RDF graph
to estimate the performance of our approach. Our implementation is available
as free software and was used in three research projects, Gnowsis, Beagle++ and
NEPOMUK, as well as in the commercial software Aduna Autofocus.

The main contribution of this work is the RDFS vocabulary for the virtual
properties used in the queries. Combined with the suggested overall architec-
ture and document format for Lucene documents, this work can be replicated
by others. Within 2007, we are communicating with developers of other desktop
search engines to standardise this query language as best practice extension of
SPARQL. The community work is part of the NEPOMUK EU project. We envi-
sion that future Desktop and Web Search Engines will be based on a combination
of SPARQL and full-text retrieval, for which this work is a needed input.

A LuceneSail Vocabulary

@prefix : <http://openrdf.org/projects/contrib/lucenesail/schema#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

:LuceneQuery a rdfs:Class ;
rdfs:label ”A Lucene Query”.

:score a rdfs:Property ;
rdfs:label ”score” ;
rdfs:comment ”The Lucene relevance score of this query” ;
rdfs:domain :LuceneQuery.
rdfs:range xsd:float ;

:query a rdfs:Property ;
rdfs:label ”query” ;
rdfs:comment ”The keywords to match” ;
rdfs:domain :LuceneQuery.
rdfs:range xsd:string ;

:snippet a rdfs:Property ;
rdfs:label ”snippet” ;
rdfs:comment ”The snippet of matching text” ;
rdfs:domain :LuceneQuery.
rdfs:range xsd:string ;

:matches a rdfs:Property ;
rdfs:label ”matches” ;
rdfs:comment ”Connecting the resource to the query” ;
rdfs:domain rdf:Resource ;
rdfs:range :LuceneQuery.

References

1. (W3C) Semantic Web Activity: Resource Description Framework (RDF). http:

//www.w3.org/RDF/ (29 January 2007)
2. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. http:

//www.w3.org/TR/rdf-sparql-query/ (26 March 2007)
3. Seaborne, A.: RDQL - A Query Language for RDF. http://www.w3.org/

Submission/RDQL/ (9 January 2004)
4. Broekstra, J., Kampman, A.: SeRQL: An RDF Query and Transformation Lan-

guage. (5 August 2004)
5. (W3C) Semantic Web Activity: RDF Primer. http://www.w3.org/TR/

rdf-primer/ (10 February 2004)
6. Reggiori, A., van Gulik, D.W., Bjelogrlic, Z.: Indexing and retrieving Semantic

Web resources: the RDFStore model. SWAD-Europe Workshop. http://www.w3.
org/2001/sw/Europe/events/20031113-storage/positions/asemantics.html

(October 2003)
7. Harth, A., Decker, S.: Optimized Index Structures for Querying RDF from the

Web. 3rd Latin American Web Congress (2005)
8. Barreau, D., Nardi, B.A.: Finding and Reminding: File Organization from the

Desktop. (1995)
9. Sauermann, L., Grimnes, G.A., Kiesel, M., Fluit, C., Maus, H., Heim, D., Nadeem,

D., Horak, B., Dengel, A.: Semantic Desktop 2.0: The Gnowsis Experience. In:
Proc. of the ISWC Conference. (November 2006) 887–900

10. Guo, Y., Pan, Z., Heflin, J.: LUBM: A Benchmark for OWL Knowledge Base
Systems. Journal of Web Semantics 3(2) (2005) 158–182

11. W3C: Survey of RDF/Triple Data Stores. http://www.w3.org/2001/05/rdf-ds/
DataStore (April 2003)

12. Beckett, D., Grant, J.: SWAD-Europe Deliverable 10.2: Mapping Semantic Web
Data with RDBMSes. http://www.w3.org/2001/sw/Europe/reports/scalable_

rdbms_mapping_report/ (Jan. 2003)
13. Lee, R.: Scalability Report on Triple Store Applications. http://simile.mit.

edu/reports/stores/ (July 2004)
14. Harris, S., Gibbins, N.: 3store: Efficient Bulk RDF Storage. In: Proceedings of the

First International Workshop on Practical and Scalable Semantic Systems, Sanibel
Island, Florida, USA (2003)

15. Wood, D., Gearon, P., Adams, T.: Kowari: A Platform for Semantic Web Storage
and Analysis. In: Conference Proceedings XTech 2005, Amsterdam, Netherlands
(25–27 May 2005)

